Clustering proteins into families using artificial neural networks [published erratum appears in Comput Appl Biosci 1992 Jun;8(3): 305]
نویسندگان
چکیده
An artificial neural network was used to cluster proteins into families. The network, composed of 7 x 7 neurons, was trained with the Kohonen unsupervised learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of 447 proteins, belonging to 13 different families. As a result of the training, and without any a priori indication of the number or composition of the expected families, the network self-organized the activation of its neurons into topologically ordered maps in which almost all the proteins (96.7%) were correctly clustered into the corresponding families. In a second computational experiment, a similar network was trained with one family of the previous learning set (76 cytochrome c sequences). The new neural map clustered these proteins into 25 different neurons (five in the first experiment), wherein phylogenetically related sequences were positioned close to each other. This result shows that the network can adapt the clustering resolution to the complexity of the learning set, a useful feature when working with an unknown number of clusters. Although the learning stage is time consuming, once the topological map is obtained, the classification of new proteins is very fast. Altogether, our results suggest that this novel approach may be a useful tool to organize the search for homologies in large macromolecular databases.
منابع مشابه
Identification of fuzzy neural networks by forward recursive input-output clustering and accurate similarity analysis
This paper proposes a two-phase identification approach to Mamdani fuzzy neural networks. The first phase is the system identification which includes a novel forward recursive input-output clustering method for the structure initialization and the gradient descent algorithm for the parameter initialization. The main advantage of the proposed method is that it fits perfectly the special clusteri...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملAn alternative transformation in ranking using l1-norm in data envelopment analysis
Jahanshahloo et al. (Appl Math Comput 153:215–224, 2004) propose a method for ranking extremely efficient decision making units (DMUs) in data envelopment analysis (DEA) using super-efficiency technique and l1-norm and they show that the presented method is able to eliminate the existing difficulties in some methods. This paper suggests an alternative transformation to convert the nonlinear mod...
متن کاملNeural network classification of homomorphic segmented heart sounds
A novel method for segmentation of heart sounds (HSs) into single cardiac cycle (S1-Systole-S2-Diastole) using homomorphic filtering and K-means clustering is presented. Feature vectors were formed after segmentation by using Daubechies-2 wavelet detail coefficients at the second decomposition level. These feature vectors were then used as input to the neural networks. Grow and Learn (GAL) and ...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer applications in the biosciences : CABIOS
دوره 8 1 شماره
صفحات -
تاریخ انتشار 1992